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ABSTRACT mum Mean Squared Error, MMSE, estimation. Techniques
In a previous work, Phoneme-Dependent Multi- like Codeword-Dependent Cepstral Normalization, CDCN
Environment Models based Linear Normalization, PD- [5], Stereo based Piecewise Linear Compensation for En-
MEMLIN, was presented and it was proved to be effective vironments, SPLICE [6], Multi-Environment Models based
to compensate environment mismatch. Since PD-MEMLIN LInear Normalization, MEMLIN [7], or Phoneme Depen-
transformations have to be estimated from stereo data cordent MEMLIN, PD-MEMLIN, which is the phoneme de-
pora, and the computational cost is high, two approaches aréoendent version of MEMLIN, [8] are some examples of
proposed: Coefficient Progressive PD-MEMLIN, CPPD- MMSE based feature compensation.
MEMLIN, and blind PD-MEMLIN. The first one consists A previous work [8] shows that PD-MEMLIN is effec-
on a partial normalization of the feature vector, reducing tive in order to compensate the effects of dynamic and ad-
the computational cost, while blind PD-MEMLIN can be Verse car conditions. Although, this technique has two lim-
applied over any non stereo data corpora, thus the estimaitations. Firstly, the computation cost, and secondly, stereo
tion of the transformation is based on an iterative techniquedata is needed to estimate the linear transformations in a
from noisy data and a target clean speech model. Some exprevious training process, and they may not be always avail-
periments with SpeechDat Car database were carried ougble. In this paper, two approaches are presented in order
in order to study the behavior of the proposed techniquesto compensate these problems: Coefficient Progressive PD-
in a real acoustic environment. In the previous work, PD- MEMLIN, CPPD-MEMLIN, and blind PD-MEMLIN. In
MEMLIN with stereo data and normalizing 13 MFCC co- CPPD-MEMLIN, only a subset of parameters of the feature
efficients reached 77.67 of improvement. In this paper, vectors are normalized, instead of using all of them, ob-
CPPD-MEMLIN with only 4 coefficients obtains an aver- taining a lighter computational cost technique; while, blind
age improvement of 72.40, and blind PD-MEMLIN ob- PD-MEMLIN training process is only based on noisy sig-
tains an average improvement of 73726 nal to estimate the transformations and there is no need of
stereo data. These two algorithms will be compared with
1. INTRODUCTION classic PD-MEMLIN, using stereo data and normalizing all
When testing and training acoustic conditions are differ- the coefficients of the feature vectors.
ent, the accuracy of speech recognition systems rapidly de-  This paper is organized as follows: in Section 2, an
grades. In order to compensate this mismatch, several techeverview of PD-MEMLIN is presented. The blind ver-
nigues have been developed. They can be grouped into twasion of PD-MEMLIN is introduced in Section 3. CPPD-
important categories: acoustic models adaptation, and feaMEMLIN is explained in Section 4. The results for CPPD-
ture compensation, or normalization. The first one, which MEMLIN and blind PD-MEMLIN with SpeechDat Car
only modifies the acoustic models, can be more specific,database [9] are presented and discussed in Section 5. Fi-
whereas, feature compensation [1], which modifies the fea-nally, the conclusions are included in Section 6.
ture vectors, needs. less data and computation time. Hybﬂd > PD-MEMLIN
techniques also exist and they have proved to be effective

[2]. The use of one or other kind of algorithms depends on phoneme Dependent Multi-Environment Models based

the application. _ N Linear Normalization is an empirical feature vector normal-
There are several feature compensation families [3, 4], ization technique which uses stereo data in order to esti-
but one of the most promised research line is basédior mate the different compensation linear transformations in

This work has been supported by the national project TIC2002-04103- the previous trai.ning process. _The clean feature space is
C03-01 modelled as a mixture of Gaussians for each phoneme. The



noisy space is split in several basic acoustic environmentswherer oh sEh is the independent term of the linear trans-
and each environment is modelled as a mixture of Gaus- forma“on and it depends on each pair of Gaussiaffs,
sians for each phoneme. The transformations are estimategqse.ph_

for all basic environments between a clean phoneme Gaus- v

sian and a noisy Gaussian of rhe same phoneme. This can , Cepstral enhancement
be shown in Fig. 1 for one environment.

Given the noisy vectory,, the clean one is estimated by

MMSE criterion
0= Elaly) = [ ap(aly)dz, ©
xr
— gavssan ot dta (s wherep(z|y;) is the Probability Density Function (PDF) of
gaussian of daa (57 x giveny,. With the three previous approximations, (6), can
Cioon GMM phoneme N el oy be approximated as expression (7).

model (ph)

In (7), p(e|y;) is the environment weighi(ph|y:, e) is
the probability of the phonemgh, given the noisy feature
s oo S basic vector and the environmeni(s&?" |y, e, ph) is the proba-

environment pace (0 bility of the noisy Gaussian glveyr, the environment, and
the phoneme, and finally(s2"|y;, e, ph, s&?") is the prob-
ability of the clean Gaussian givep, e, ph andsgrph.

r,. scon and p(s2"|ys, e, ph, soP") are  computed
o through a previous training process. The other probabilities
2.1. Approximations are estimated on line for each time frame in the recognition
Three approximations are assumed: firstly, some basic enPhase.
vironments are defined in the noisy space, and noisy feature 1 he probability of the environment(e|y. ), is estimated
vectors,y, follow the distribution of Gaussian mixture for ~USing arecursive solution as
each basic environment and phoneme

Fig. 1. Scheme of PD-MEMLIN transformations for one environment.
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e.ph ’ where 3 is the memory constant, close to 1 (0.98 in this
pylsy™") = N(%/‘s;mhvzsg*’h)’ @) paper), and(e|yo) is considered uniform for all environ-
,ph i-
where s¢*" denotes the correspondent Gaussian of the mentz. Als0,p(phly:, €) and p(sy"* [y, e, ph), are esti
noisy model for the environment angh phonemey eph s mated as
Yigewh, andp(s&P") are the mean vector, the dragonal co- (Phlye. ) Pe ph(Yt) ©)
e) = —=———"——.
variance matrix, and the weight associated#". PApRIYe > ph Pe,ph(Yt)
Second, clean feature vectarsare modelled following h
bt o P(yelsg?")p(sy?")
the distribution of Gaussian mixture p(soP"ys, e, ph) = - Sy . (10)
> oon p(yel sy )p(sy™")
ph ph
Pph (@ Zp zlsg (s, ®) In order to compute p(st"|y,, e, ph,sP"),  and
r.on eph, @ Previous training process with available
x 9y
p(z|sPh) = N(x;,u ohy X o), 4) stereo data for each environment and phoneme is needed:
X _ e,ph e,ph E,Ph f [ feat
eph = {27 yers T ey @ .}, for clean feature

wheres?" denotes the correspondent Gaussian of the clean ooh ph e.ph
model and phonemep ,», X, and p(y|s2") are the ~ VEClOrs andepn = {41 s U200 YL, } fOT NOISY
mean, diagonal covariance matrrx and the weight associ-ones, witht. ,;, € [1, Te ph)-
ated tos2", The conditional probabilityp(s2”|y:, e, ph, s ’Ph) can

Third, for each time frame, z is approached as a func-  be considered time independent, and it may be estimated
tion, ¥, of the noisy feature vectoy,, clean model Gaus-  using (1), (2), (3), and (4): expression (11).
sians,s2", and noisy environment model Gaussiasjs;" Finally, 7, .. can be obtained by minimizing the

weighted square errorEsgh7S§,ph (expressions (12) and
o~ Uy, 2SS =y — g eon,  (B) (13),

Sy
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In (12) and (13)p(s ePh|yt’p£lh,e ph) is the probability As modified Kullback Liebner distance between two
of 527", given the noisy feature vectof’ph the environ- ~ Gaussians is not symmetric, and it is not proportional to
in the same expresswrp{spﬂxtfi;,e,ph) is the probabll- Plicr,(s5P", 527, can be defined to estma;];@( ph|8 )
ity of s2* given the clean feature vecterandph, and it is
estimated as 2

leL( e oh Sph) h h h
dicp(s5P" ) B™) + dgep (sB", 557"
(e 2)p(s2) (o)
sphx’ph,e,ph = Leiph i . (14)
P ) (et () phygerny = Pleo(sy? 55
e ph po(szr |Sy7 ) - h oh (17)
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3. BLIND PD-MEMLIN In order to obtain-, . ...», the following expression
T 1Y

is used
Since in many cases stereo data may not be available, an

iterative blind training version of PD-MEMLIN has been

developed. As it can be observed in Section 2, only two S (P yEPh e ph) (yi P — p )
terms need stereo data in order to be estimqtésgﬂs ph) To,sbh 5Pt = ’ S s ,ph| eph 3 )
andr soh sewh Blind PD-MEMLIN training process has two tepnd’ Yteon &P

(18)
Note thatroysgh,,sz,ph is the correspondent PD-MEMLIN
expression with stereo data, assuming that the clean fea-
3.1. Initialization ture vectors associated to a clean Gaussigh, are the
mean vectory . To estimate the final initialization terms,

phases the initialization, and the adjust iterative phase.

Initialization is based on two steps. The first one estimates Lo
a rough approximationpf (s2"|s¢?"), andr; . ) for pini(sh"|syP"), andr, , 5o sorn, (WO techniques need to

the two variables, and the second one obtains the final ini-P€ @pplied: Forced alignment normalization of noisy train-
tialization termspiy; (s5"|s;"), andr, ., o cpn. ing feature vectors, which obtaips,; (s2"|s;”"), and Ex-
an Sz S

L L ) pectation Maximization, EM, algorithm, WhICh estimates
po(sh|syP") is estimated by a modified Kullback Lieb-

. . . . . h _e,ph.
ner distance. Given a noisy Gaussian of thenviron- iniysz syt o . .

t andph oh e.ph d | f th Forced alignment normalization of noisy training fea-
ment andph phoneme,s;?", and a clean one of thph

h vh th dified Kullback Liebner di ture vector technique consists on three steps:
phoneme,s;, the modified Kullback Liebner distance, e Estimate the phoneme associated to each noisy train-
dxr(syP", sb"), can be obtained as expression (15), where

: i ~~ ing feature vector by a forced Viterbi alignment of the train-

X on (z 1) is thez’“‘ term of the diagonal covariance matrix ing utterance.

of thes?" Gaussian, anil . » (i, i) is thei*" term of the di-  Normalize noisy training feature vectors only with the
agonal covariance matrix of the noisy Gaussigit". Note transformations of the associated phonemes; in this case
that the use of this expression is based on the assumptiomo(s5"[s5?"), andry o e.on.

that noise modifies the mean vectors of the Gaussians in a e Estimate the new transformations with PD-MEMLIN
more important way than covariance matrices. stereo data training expressions (11), (13), where clean
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training data will be the normalized noisy training feature ing with forced alignment. Then the fast reestimation of the

vectors. In this case, only (11) will be applied in order to parameters is done thanks to the forced segmentation train-

obtainpim(sgﬂs;#’h). ing recursion, leading the transformation parameters to the
In order to estimateim’sgh,,sz,ph, EM algorithm is ap-  local maximum.

plied. The correspondent expression can be seen in (19),

where p(st"|y;”" | 557", ¢), means that the probability 4 COEFFICIENT PROGRESSIVE PD-MEMLIN
is estimated with the correspondent noisy feature vector,

Yy ’ph , and the Gaussian is composed by the weights andSince the first coefficients of MFCC feature vectors are

covanance matrix of;;’ph, and the mean vector jg_»» + more important than the last ones in speech recognition,
To,s0h gewh- and in order to reduce the computational cost of the algo-
T %Yy

rithm, the Coefficient Progressive PD-MEMLIN algorithm

proposes normalizing only the first coefficients of the fea-

ture vectors, while the other ones are not compensated.
[ o2 sch and Note that this algorithm represents an important saving

pmi(Sthsy’ph) have been obtained, the new iteration values of additions and data storage.cltoefficients are not com-

for the transformation terms are estimated by forced align- pensated, the Data Storage Saving, DSS, will be
ment normalization of noisy training feature vector tech-

3.2. Adjust iterative process

Once the initialization expressions for

nique. Givem the correspondent iteration, withe [1, N], DSS = Nthsthsf’hNe 6 (20)
where N the final number of iterationsy, _.» soPh and whereN,,;, is the number of phonemes ,» is the num-
Pn(s ph\se’P’l) will be estimated with the transformatlons ber of clean Gaussians for each phoneMeJﬁ is the num-

of iterationn — 1 (or r; ; »n s and pml(Sph|S Phy if ber of noisy Gaussians for each phoneme and environment,
n = 1), following the three steps treated in 3.1; and N, is the number of environments. On the other hand,

e Estimate the phoneme associated to each noisy trainthe Addition Saving, AS, will bedS = DSS - Ny, where
ing feature vector by a forced Viterbi alignment of the train- Ny is the number of frames which needs to be normalized.
ing utterance.

e Normalize noisy training feature vectors only 5. RESULTS
with the transformations of the associated phonemes:
Dn— 1(5”h|8 PR, andr,, — 1,880 sSPh A set of experiments have been carried out using the Span-

« Estimate the new transformations with PD-MEMLIN ish SpeechDat Car database [9]. Seven environments are
stereo data training expressions (11), (13), where cleandefined: car stopped, motor running (E1), town traffic, win-
training data will be the normalized noisy training feature dows close and climatizer off (silent conditions) (E2), town
vectors. traffic and noisy conditions: windows open diod clima-

Several experiments were carried out in order to study tizer on (E3), low speed, rough road, and silent conditions
the behavior of forced alignment normalization of noisy (E4), low speed, rough road, and noisy conditions (E5),
training feature vector technique, and EM algorithm. high speed, good road, and silent conditions (E6), and high
The forced segmentation based algorithm converges veryspeed, good road, and noisy conditions (E7).
quickly, but the local maximum provided and the recogni- The task used is isolated and continuous digits. All the
tion results are not as good as in the EM training process.utterances are 16 KHz sampled. The clean signals (Ch0)
Since the EM convergence is found to be slower, a joint are recorded with a close talk microphone (Shune SM-
solution is the alternative here proposed. In the joint ap- 10A), and the noisy signhals (Ch2) are recorded by a micro-
proach, the final transformations can be trained in a smallphone placed on the car ceiling in front of the driver (Peiker
number of iterations, obtaining good enough results as weME15/V520-1). The SNR range for the clean signals goes
will discuss in section 5. The joint solution enjoys the ini- from 20 to 30 dB, and for the noisy signals goes from 5 to 20
tial values of the EM algorithm, thus the parameters after dB. 12 MFCC and energy are computed each 10 ms using a
the EM iteration are near a better maximum than initializ- 25 ms Hamming window.



Train Test| E1 E2 E3 E4 ES E6 E7 ‘MWER (%)

Ch0 ChO| 190 2.64 181 1.75 1.62 0.64 0.35 1.75
Ch0O Ch2| 591 1449 1455 20.17 21.07 16.185.71 16.21
Ch2 Ch2| 6.67 1424 1273 1291 14.97 9.688.50 11.81

Table 1. WER baseline results, i for different conditions of training and testing.
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Fig. 2. Average improvement, i, for seven environments for PD- Fig. 3. Average improvement, i%, for the seven environments for
MEMLIN, and blind PD-MEMLIN in function of the number of transfor- CPPD-MEMLIN in function of the last normalized coefficient of the fea-
mations per environment (SPLICE algorithm with 128 Gaussians for noisy ture vectors.

space model is included timmpare).

WER.NE

MWER = 2. WERN, “, (21)
MWER (%)  IMP (%) e Ng

PD-MEMLIN 5.30 77.67 whereW ER, is the WER obtained fo¢ environment and

Blind PD-MEMLIN 5.74 73.96 N¢ is the number of utterances eenvironment.

In order to compare PD-MEMLIN and blind PD-
MEMLIN, the Transformation Cost per environment, TC,
Table 2. Best mean WER and improvement for PD-MEMLIN, is defined as7'C' = 10l0910(Nthsgh ngh)-
blind PD-MEMLIN, and CPPD-MEMLIN, in%. The comparative results between PD-MEMLIN and

blind PD-MEMLIN are shown in Fig. 2, where it is pre-
sented the average improvement, IMP, which has been cal-

The feature normalization techniques are applied over culated with the improvement of each environment and pro-

the 12 MFCC and delta energy, and the different used mod-Portionality to the number of utterances of each environ-

els have 26 Spanish phonemes with 2, 4, 8, or 16 gaussian§'€ntin a similar way as MWER. The best IMP and MWER
for each one. are included in Table 2. In order to compare, the values for

. ) SPLICE [6] with 128 Gaussians for noisy model and stereo
For recognition, the feature vector is composed of the 4414 are included, too. It can be observed that the results
12 normalized MFCC with cepstral mean substraction, the with blind PD-MEMLIN are close to PD-MEMLIN, espe-

first and second derivative and the normalized delta en-cjy iy when the number of transformations per environment
ergy, given a feature vector of 37 coefficients. The phonetic ;¢ high.

acou;tic modelg are compos_ed of 25 three state continuous The results obtained with CPPD-MEMLIN are shown in
density HMM with 16 Gaussians per state to model Span-giq 3 \yhere it is presented the average improvement, IMP,
ish phonemes and 2 silence models for long and interword,, it 1 Gaussians per phoneme for noisy and clean models.
silences. The best average IMP and MWER are included in Table 2.
The Word Error Rate, WER, baseline results for each It can be observed that only with 4 normalized coefficients,
environment are presented in Table 1. MWER representsan improvement of 72.4% is obtained, not very far from
the Mean WER, computed proportionality to the number of the result with 13 normalized coefficients and stereo data
utterances of each environment training. In this case, the number addition saving is 6%.23

CPPD-MEMLIN 5.15 78.17




concerning classic PD-MEMLIN normalizing the 13 coef- [8] L. Buera, E. Lleida, A. Miguel, and A. Ortega, “Ro-
ficients. bust speech recognition in cars using phoneme depen-
dent multi-environment linear normalizationifi Proc.

6. CONCLUSIONS INTERSPEECHSep. 2005.

) [9] A. Moreno, A. Noguiera, and A. Sesma, “Speechdat-
In this paper we have presented two approaches of PD- g Spanish, Technical Report SpeechDat
MEMLIN: blind PD-MEMLIN, which does not need stereo

data to estimate the transformations, and Coefficient Pro-
gressive PD-MEMLIN, CPPD-MEMLIN, which only nor-
malizes a subset of coefficients of the feature vectors. The
advantages of them concerning classic PD-MEMLIN (not
to use stereo data and a less number of operations), do
not produce an important degradation in WER. So, classic
PD-MEMLIN obtains an average improvement of 7767
whereas blind PD-MEMLIN reaches an improvement of
73.96%, and CPPD-MEMLIN increases it until 78.%rif

12 MFCC coefficients are normalized, but with only 4 nor-
malized coefficients, it already obtains important results
(72.40%).
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