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ABSTRACT
In a previous work, Phoneme-Dependent Multi-

Environment Models based LInear Normalization, PD-
MEMLIN, was presented and it was proved to be effective
to compensate environment mismatch. Since PD-MEMLIN
transformations have to be estimated from stereo data cor-
pora, and the computational cost is high, two approaches are
proposed: Coefficient Progressive PD-MEMLIN, CPPD-
MEMLIN, and blind PD-MEMLIN. The first one consists
on a partial normalization of the feature vector, reducing
the computational cost, while blind PD-MEMLIN can be
applied over any non stereo data corpora, thus the estima-
tion of the transformation is based on an iterative technique
from noisy data and a target clean speech model. Some ex-
periments with SpeechDat Car database were carried out
in order to study the behavior of the proposed techniques
in a real acoustic environment. In the previous work, PD-
MEMLIN with stereo data and normalizing 13 MFCC co-
efficients reached 77.67% of improvement. In this paper,
CPPD-MEMLIN with only 4 coefficients obtains an aver-
age improvement of 72.40%, and blind PD-MEMLIN ob-
tains an average improvement of 73.96%.

1. INTRODUCTION

When testing and training acoustic conditions are differ-
ent, the accuracy of speech recognition systems rapidly de-
grades. In order to compensate this mismatch, several tech-
niques have been developed. They can be grouped into two
important categories: acoustic models adaptation, and fea-
ture compensation, or normalization. The first one, which
only modifies the acoustic models, can be more specific,
whereas, feature compensation [1], which modifies the fea-
ture vectors, needs less data and computation time. Hybrid
techniques also exist and they have proved to be effective
[2]. The use of one or other kind of algorithms depends on
the application.

There are several feature compensation families [3, 4],
but one of the most promised research line is based onMini-
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mum Mean Squared Error, MMSE, estimation. Techniques
like Codeword-Dependent Cepstral Normalization, CDCN
[5], Stereo based Piecewise LInear Compensation for En-
vironments, SPLICE [6], Multi-Environment Models based
LInear Normalization, MEMLIN [7], or Phoneme Depen-
dent MEMLIN, PD-MEMLIN, which is the phoneme de-
pendent version of MEMLIN, [8] are some examples of
MMSE based feature compensation.

A previous work [8] shows that PD-MEMLIN is effec-
tive in order to compensate the effects of dynamic and ad-
verse car conditions. Although, this technique has two lim-
itations. Firstly, the computation cost, and secondly, stereo
data is needed to estimate the linear transformations in a
previous training process, and they may not be always avail-
able. In this paper, two approaches are presented in order
to compensate these problems: Coefficient Progressive PD-
MEMLIN, CPPD-MEMLIN, and blind PD-MEMLIN. In
CPPD-MEMLIN, only a subset of parameters of the feature
vectors are normalized, instead of using all of them, ob-
taining a lighter computational cost technique; while, blind
PD-MEMLIN training process is only based on noisy sig-
nal to estimate the transformations and there is no need of
stereo data. These two algorithms will be compared with
classic PD-MEMLIN, using stereo data and normalizing all
the coefficients of the feature vectors.

This paper is organized as follows: in Section 2, an
overview of PD-MEMLIN is presented. The blind ver-
sion of PD-MEMLIN is introduced in Section 3. CPPD-
MEMLIN is explained in Section 4. The results for CPPD-
MEMLIN and blind PD-MEMLIN with SpeechDat Car
database [9] are presented and discussed in Section 5. Fi-
nally, the conclusions are included in Section 6.

2. PD-MEMLIN

Phoneme Dependent Multi-Environment Models based
LInear Normalization is an empirical feature vector normal-
ization technique which uses stereo data in order to esti-
mate the different compensation linear transformations in
the previous training process. The clean feature space is
modelled as a mixture of Gaussians for each phoneme. The



noisy space is split in several basic acoustic environments
and each environment is modelled as a mixture of Gaus-
sians for each phoneme. The transformations are estimated
for all basic environments between a clean phoneme Gaus-
sian and a noisy Gaussian of the same phoneme. This can
be shown in Fig. 1 for one environment.

Fig. 1. Scheme of PD-MEMLIN transformations for one environment.

2.1. Approximations

Three approximations are assumed: firstly, some basic en-
vironments are defined in the noisy space, and noisy feature
vectors,y, follow the distribution of Gaussian mixture for
each basic environment and phoneme

pe,ph(y) =
∑

se,phy

p(y|se,phy )p(se,phy ), (1)

p(y|se,phy ) = N(y;μ
se,phy
,Σ
se,phy
), (2)

where se,phy denotes the correspondent Gaussian of the
noisy model for thee environment andph phoneme;μ

se,phy
,

Σ
se,phy

, andp(se,phy ) are the mean vector, the diagonal co-

variance matrix, and the weight associated tose,phy .
Second, clean feature vectors,x, are modelled following

the distribution of Gaussian mixture

pph(x) =
∑

sphx

p(x|sphx )p(s
ph
x ), (3)

p(x|sphx ) = N(x;μsphx ,Σsphx ), (4)

wheresphx denotes the correspondent Gaussian of the clean
model and phoneme;μ

sphx
, Σ

sphx
, and p(y|sphx ) are the

mean, diagonal covariance matrix, and the weight associ-
ated tosphx .

Third, for each time frame,t, x is approached as a func-
tion, Ψ, of the noisy feature vector,yt, clean model Gaus-
sians,sphx , and noisy environment model Gaussians,se,phy

x ' Ψ(yt, s
ph
x , s

e,ph
y ) = yt − rsphx ,se,phy

, (5)

wherer
sphx ,s

e,ph
y

is the independent term of the linear trans-

formation, and it depends on each pair of Gaussians,sphx
andse,phy .

2.2. Cepstral enhancement

Given the noisy vector,yt, the clean one is estimated by
MMSE criterion

x̂t = E[x|yt] =
∫

x

xp(x|yt)dx, (6)

wherep(x|yt) is the Probability Density Function (PDF) of
x givenyt. With the three previous approximations, (6), can
be approximated as expression (7).

In (7), p(e|yt) is the environment weight,p(ph|yt, e) is
the probability of the phonemeph, given the noisy feature
vector and the environment,p(se,phy |yt, e, ph) is the proba-
bility of the noisy Gaussian givenyt, the environment, and
the phoneme, and finallyp(sphx |yt, e, ph, s

e,ph
y ) is the prob-

ability of the clean Gaussian givenyt, e, ph andse,phy .
r
sx,s

e,ph
y

and p(sphx |yt, e, ph, s
e,ph
y ) are computed

through a previous training process. The other probabilities
are estimated on line for each time frame in the recognition
phase.

The probability of the environment,p(e|yt), is estimated
using a recursive solution as

p(e|yt) = β ∙ p(e|yt−1) + (1− β)

∑
ph pe,ph(yt)∑

e

∑
ph pe,ph(yt)

, (8)

whereβ is the memory constant, close to 1 (0.98 in this
paper), andp(e|y0) is considered uniform for all environ-
ments. Also,p(ph|yt, e) and p(se,phy |yt, e, ph), are esti-
mated as

p(ph|yt, e) =
pe,ph(yt)∑
ph pe,ph(yt)

. (9)

p(se,phy |yt, e, ph) =
p(yt|se,phy )p(se,phy )

∑
se,phy
p(yt|s

e,ph
y )p(se,phy )

. (10)

In order to compute p(sphx |yt, e, ph, s
e,ph
y ), and

r
sphx ,s

e,ph
y

, a previous training process with available
stereo data for each environment and phoneme is needed:
Xe,ph = {x

e,ph
1 , ..., xe,phte,ph , ..., x

e,ph
Te,ph
}, for clean feature

vectors andYe,ph = {y
e,ph
1 , ..., ye,phte,ph

, ..., ye,phTe,ph
} for noisy

ones, withte,ph ∈ [1, Te,ph].
The conditional probability,p(sphx |yt, e, ph, s

e,ph
y ), can

be considered time independent, and it may be estimated
using (1), (2), (3), and (4): expression (11).

Finally, r
sphx ,s

e,ph
y

can be obtained by minimizing the
weighted square error,E

sphx ,s
e,ph
y

(expressions (12) and
(13)).



x̂t ' yt −
∑

e

∑

ph

∑

s
ph
x

∑

s
e,ph
y

r
s
ph
x ,s

e,ph
y
p(e|yt)p(ph|yt, e)p(s

e,ph
y |yt, e, ph)p(s

ph
x |yt, e, ph, s

e,ph
y ). (7)

p(sphx |yt, e, ph, s
e,ph
y ) ' p(sphx |s

e,ph
y ) =

∑
te,ph
p(xe,phte,ph |s

ph
x )p(y

e,ph
te,ph
|se,phy )p(sphx )p(s

e,ph
y )

∑
te,ph

∑
sphx
p(xe,phte,ph |s

ph
x )p(y

e,ph
te,ph
|se,phy )p(sphx )p(s

e,ph
y )

. (11)

E
sphx ,s

e,ph
y
=
∑

te,ph

p(sphx |x
e,ph
te,ph
, e, ph)p(se,phy |ye,phte,ph

, e, ph)(xe,phte,ph − y
e,ph
te,ph
+ r

sphx ,s
e,ph
y
)2. (12)

r
s
ph
x ,s

e,ph
y
= arg min

r
s
ph
x ,s

e,ph
y

(E
s
ph
x ,s

e,ph
y
) =

∑
te,ph
p(sphx |x

e,ph
te,ph
, e, ph)p(se,phy |ye,phte,ph

, e, ph)(ye,phte,ph
− xe,phte,ph)

∑
te,ph
p(sphx |x

e,ph
te,ph
, e, ph)p(se,phy |ye,phte,ph

, e, ph)
. (13)

In (12) and (13),p(se,phy |ye,phte,ph
, e, ph) is the probability

of se,phy , given the noisy feature vector,ye,phte,ph
, the environ-

ment and the phoneme, and it can be obtained as (10). Also,
in the same expressions,p(sphx |x

e,ph
te,ph
, e, ph) is the probabil-

ity of sphx given the clean feature vector,e andph, and it is
estimated as

p(sphx |x
e,ph
te,ph
, e, ph) =

p(xe,phte,ph |s
ph
x )p(s

ph
x )

∑
sphx
p(xe,phte,ph |s

ph
x )p(s

ph
x )
. (14)

3. BLIND PD-MEMLIN

Since in many cases stereo data may not be available, an
iterative blind training version of PD-MEMLIN has been
developed. As it can be observed in Section 2, only two
terms need stereo data in order to be estimated:p(sphx |s

e,ph
y )

andr
sphx ,s

e,ph
y

. Blind PD-MEMLIN training process has two
phases: the initialization, and the adjust iterative phase.

3.1. Initialization

Initialization is based on two steps. The first one estimates
a rough approximation (p0(sphx |s

e,ph
y ), andr0,sphx ,se,phy

) for
the two variables, and the second one obtains the final ini-
tialization terms,pini(sphx |s

e,ph
y ), andr

ini,sphx ,s
e,ph
y

.

p0(s
ph
x |s

e,ph
y ) is estimated by a modified Kullback Lieb-

ner distance. Given a noisy Gaussian of thee environ-
ment andph phoneme,se,phy , and a clean one of theph
phoneme,sphx , the modified Kullback Liebner distance,
dKL(s

e,ph
y , sphx ), can be obtained as expression (15), where

Σ
sphx
(i, i) is theith term of the diagonal covariance matrix

of thesphx Gaussian, andΣ
se,phy
(i, i) is theith term of the di-

agonal covariance matrix of the noisy Gaussian,se,phy . Note
that the use of this expression is based on the assumption
that noise modifies the mean vectors of the Gaussians in a
more important way than covariance matrices.

As modified Kullback Liebner distance between two
Gaussians is not symmetric, and it is not proportional to
the likelihood of the two Gaussians, a pseudo-likelihood,
plKL(s

e,ph
y , sphx ), can be defined to estimatep0(sphx |s

e,ph
y )

plKL(s
e,ph
y , sphx ) =

2

dKL(s
e,ph
y , sphx ) + dKL(s

ph
x , s

e,ph
y )

,

(16)

p0(s
ph
x |s

e,ph
y ) =

plKL(s
e,ph
y , sphx )

∑
sphx
plKL(s

e,ph
y , sphx )

. (17)

In order to obtainr0,sphx ,se,phy
, the following expression

is used

r0,sphx ,se,phy
=

∑
te,ph
p(se,phy |ye,phte,ph

, e, ph)(ye,phte,ph
− μ

sphx
)

∑
te,ph
p(se,phy |ye,phte,ph

, e, ph)
,

(18)
Note thatr0,sphx ,se,phy

is the correspondent PD-MEMLIN
expression with stereo data, assuming that the clean fea-
ture vectors associated to a clean Gaussian,sphx , are the
mean vector,μ

sphx
. To estimate the final initialization terms,

pini(s
ph
x |s

e,ph
y ), andr

ini,sphx ,s
e,ph
y

, two techniques need to
be applied: Forced alignment normalization of noisy train-
ing feature vectors, which obtainspini(sphx |s

e,ph
y ), and Ex-

pectation Maximization, EM, algorithm, which estimates
r
ini,sphx ,s

e,ph
y

.
Forced alignment normalization of noisy training fea-

ture vector technique consists on three steps:
• Estimate the phoneme associated to each noisy train-

ing feature vector by a forced Viterbi alignment of the train-
ing utterance.
• Normalize noisy training feature vectors only with the

transformations of the associated phonemes; in this case
p0(s

ph
x |s

e,ph
y ), andr0,sphx ,se,phy

.
• Estimate the new transformations with PD-MEMLIN

stereo data training expressions (11), (13), where clean



dKL(s
e,ph
y , sphx ) =

p(se,phy )

2

∑

i

log(
Σsphx (i, i)

Σ
se,phy
(i, i)

+
Σ
s
e,ph
y
(i, i)

Σ
sphx
(i, i)

− 1) + p(se,phy )log(
p(se,phy )

p(sphx )
). (15)

rini,sphx ,se,phy
=

∑
te,ph
p(se,phy |ye,phte,ph

, e, ph)p(sphx |y
e,ph
te,ph
, se,phy , φ)(ye,phte,ph

− μ
s
ph
x
)

∑
te,ph
p(se,phy |ye,phte,ph

, e, ph)p(sphx |y
e,ph
te,ph
, se,phy , φ)

, (19)

training data will be the normalized noisy training feature
vectors. In this case, only (11) will be applied in order to
obtainpini(sphx |s

e,ph
y ).

In order to estimater
ini,sphx ,s

e,ph
y

, EM algorithm is ap-
plied. The correspondent expression can be seen in (19),
where p(sphx |y

e,ph
te,ph
, se,phy , φ), means that the probability

is estimated with the correspondent noisy feature vector,
ye,phte,ph

, and the Gaussian is composed by the weights and

covariance matrix ofse,phy , and the mean vector isμ
sphx
+

r0,sphx ,se,phy
.

3.2. Adjust iterative process

Once the initialization expressions forr
ini,sphx ,s

e,ph
y

and

pini(s
ph
x |s

e,ph
y ) have been obtained, the new iteration values

for the transformation terms are estimated by forced align-
ment normalization of noisy training feature vector tech-
nique. Givenn the correspondent iteration, withn ∈ [1, N ],
whereN the final number of iterations,r

n,sphx ,s
e,ph
y

and

pn(s
ph
x |s

e,ph
y ), will be estimated with the transformations

of iterationn − 1 (or r
ini,sphx ,s

e,ph
y

and pini(sphx |s
e,ph
y ) if

n = 1), following the three steps treated in 3.1:
• Estimate the phoneme associated to each noisy train-

ing feature vector by a forced Viterbi alignment of the train-
ing utterance.
• Normalize noisy training feature vectors only

with the transformations of the associated phonemes:
pn−1(s

ph
x |s

e,ph
y ), andr

n−1,sphx ,s
e,ph
y

.
• Estimate the new transformations with PD-MEMLIN

stereo data training expressions (11), (13), where clean
training data will be the normalized noisy training feature
vectors.

Several experiments were carried out in order to study
the behavior of forced alignment normalization of noisy
training feature vector technique, and EM algorithm.
The forced segmentation based algorithm converges very
quickly, but the local maximum provided and the recogni-
tion results are not as good as in the EM training process.
Since the EM convergence is found to be slower, a joint
solution is the alternative here proposed. In the joint ap-
proach, the final transformations can be trained in a small
number of iterations, obtaining good enough results as we
will discuss in section 5. The joint solution enjoys the ini-
tial values of the EM algorithm, thus the parameters after
the EM iteration are near a better maximum than initializ-

ing with forced alignment. Then the fast reestimation of the
parameters is done thanks to the forced segmentation train-
ing recursion, leading the transformation parameters to the
local maximum.

4. COEFFICIENT PROGRESSIVE PD-MEMLIN

Since the first coefficients of MFCC feature vectors are
more important than the last ones in speech recognition,
and in order to reduce the computational cost of the algo-
rithm, the Coefficient Progressive PD-MEMLIN algorithm
proposes normalizing only the first coefficients of the fea-
ture vectors, while the other ones are not compensated.

Note that this algorithm represents an important saving
of additions and data storage. Ifc coefficients are not com-
pensated, the Data Storage Saving, DSS, will be

DSS = NphNsphx Nsphy Ne ∙ c, (20)

whereNph is the number of phonemes,N
sphx

is the num-
ber of clean Gaussians for each phoneme,N

sphy
is the num-

ber of noisy Gaussians for each phoneme and environment,
andNe is the number of environments. On the other hand,
the Addition Saving, AS, will beAS = DSS ∙ Nf , where
Nf is the number of frames which needs to be normalized.

5. RESULTS

A set of experiments have been carried out using the Span-
ish SpeechDat Car database [9]. Seven environments are
defined: car stopped, motor running (E1), town traffic, win-
dows close and climatizer off (silent conditions) (E2), town
traffic and noisy conditions: windows open and/or clima-
tizer on (E3), low speed, rough road, and silent conditions
(E4), low speed, rough road, and noisy conditions (E5),
high speed, good road, and silent conditions (E6), and high
speed, good road, and noisy conditions (E7).

The task used is isolated and continuous digits. All the
utterances are 16 KHz sampled. The clean signals (Ch0)
are recorded with a close talk microphone (Shune SM-
10A), and the noisy signals (Ch2) are recorded by a micro-
phone placed on the car ceiling in front of the driver (Peiker
ME15/V520-1). The SNR range for the clean signals goes
from 20 to 30 dB, and for the noisy signals goes from 5 to 20
dB. 12 MFCC and energy are computed each 10 ms using a
25 ms Hamming window.



Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

Ch0 Ch0 1.90 2.64 1.81 1.75 1.62 0.64 0.35 1.75

Ch0 Ch2 5.91 14.49 14.55 20.17 21.07 16.1935.71 16.21

Ch2 Ch2 6.67 14.24 12.73 12.91 14.97 9.68 8.50 11.81

Table 1. WER baseline results, in% for different conditions of training and testing.

Fig. 2. Average improvement, in%, for seven environments for PD-
MEMLIN, and blind PD-MEMLIN in function of the number of transfor-
mations per environment (SPLICE algorithm with 128 Gaussians for noisy
space model is included tocompare).

MWER (%) IMP (%)

PD-MEMLIN 5.30 77.67

Blind PD-MEMLIN 5.74 73.96

CPPD-MEMLIN 5.15 78.17

Table 2. Best mean WER and improvement for PD-MEMLIN,
blind PD-MEMLIN, and CPPD-MEMLIN, in%.

The feature normalization techniques are applied over
the 12 MFCC and delta energy, and the different used mod-
els have 26 Spanish phonemes with 2, 4, 8, or 16 gaussians
for each one.

For recognition, the feature vector is composed of the
12 normalized MFCC with cepstral mean substraction, the
first and second derivative and the normalized delta en-
ergy, given a feature vector of 37 coefficients. The phonetic
acoustic models are composed of 25 three state continuous
density HMM with 16 Gaussians per state to model Span-
ish phonemes and 2 silence models for long and interword
silences.

The Word Error Rate, WER, baseline results for each
environment are presented in Table 1. MWER represents
the Mean WER, computed proportionality to the number of
utterances of each environment

Fig. 3. Average improvement, in%, for the seven environments for
CPPD-MEMLIN in function of the last normalized coefficient of the fea-
ture vectors.

MWER =

∑
eWEReN

e
u∑

eN
e
u

, (21)

whereWERe is the WER obtained fore environment and
Neu is the number of utterances ofe environment.

In order to compare PD-MEMLIN and blind PD-
MEMLIN, the Transformation Cost per environment, TC,
is defined as:TC = 10log10(NphNsphx Nsphy ).

The comparative results between PD-MEMLIN and
blind PD-MEMLIN are shown in Fig. 2, where it is pre-
sented the average improvement, IMP, which has been cal-
culated with the improvement of each environment and pro-
portionality to the number of utterances of each environ-
ment in a similar way as MWER. The best IMP and MWER
are included in Table 2. In order to compare, the values for
SPLICE [6] with 128 Gaussians for noisy model and stereo
data are included, too. It can be observed that the results
with blind PD-MEMLIN are close to PD-MEMLIN, espe-
cially when the number of transformations per environment
is high.

The results obtained with CPPD-MEMLIN are shown in
Fig. 3, where it is presented the average improvement, IMP,
with 16 Gaussians per phoneme for noisy and clean models.
The best average IMP and MWER are included in Table 2.
It can be observed that only with 4 normalized coefficients,
an improvement of 72.40% is obtained, not very far from
the result with 13 normalized coefficients and stereo data
training. In this case, the number addition saving is 69.23%,



concerning classic PD-MEMLIN normalizing the 13 coef-
ficients.

6. CONCLUSIONS

In this paper we have presented two approaches of PD-
MEMLIN: blind PD-MEMLIN, which does not need stereo
data to estimate the transformations, and Coefficient Pro-
gressive PD-MEMLIN, CPPD-MEMLIN, which only nor-
malizes a subset of coefficients of the feature vectors. The
advantages of them concerning classic PD-MEMLIN (not
to use stereo data and a less number of operations), do
not produce an important degradation in WER. So, classic
PD-MEMLIN obtains an average improvement of 77.67%,
whereas blind PD-MEMLIN reaches an improvement of
73.96%, and CPPD-MEMLIN increases it until 78.17% if
12 MFCC coefficients are normalized, but with only 4 nor-
malized coefficients, it already obtains important results
(72.40%).
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